18721

A 120 MINUTES

1.	What is the range of the real valued function $y = \frac{5}{2x-10}$?									
	A)	$(-\infty,\infty)$	B)	$(-\infty,0) \cup (0,\infty)$						
	C)	$(-\infty,5) \cup (5,\infty)$	D)	[0,∞)						
2.	Whic	Which of the following is the inverse of the function $f(x) = e^{2x}$?								
	A)	$g(x) = \ln x$	B)	$g(x) = \ln(2x)$						
	C)	$g(x) = \ln \sqrt{x}$	D)	$g(x)=e^{-2x}$						
3.		If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ equals the sum of their squares, then								
	A)	$2ac = ab + b^2$	B)	2ac = a + b						
	C)	$2ac = a^2 + b^2$	D)	$2ac = a^2 - b^2$						
4.	Whic	Which of the following is the equation of the plane containing the lines?								
		$\frac{x-1}{-2} = y - 4 = z$ and $\frac{x-2}{-3} = \frac{y-1}{4} = \frac{z-2}{-1}$?								
	A)	x + y + z = 0	B)	x + y + z = 1						
	C)	x + y + z = 4	D)	x + y + z = 5						
5.	The parametric equation of the line passing through the point $(1, 2, 3)$ and perpendicular to the xz-plane is given by:									
	A)	x = 1, y = 2, z = 3	B)	x = 1 + t, y = 2, z = 3						
	C)	x = 1, y = 2 + t, z = 3	D)	x = 1, y = 2, z = 3 + t						
6.	Whic	Which of the following statements is true of the function $f(x) = \frac{x+2}{x^2-3x-10}$?								
	A)	f is continuous for all real x								
	B)	B) f has a removable discontinuity at $x = -2$ and a non-removable discontinuity at $x = 5$								
	C)	C) <i>f</i> has removable discontinuities at $x = -2$ and $x = 5$								

D) f has a removable discontinuity at x = 5 and a non-removable discontinuity at x = -2 7. Consider the functions

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), x \neq 0\\ 0, \quad x = 0 \end{cases}$$

And

$$f(x) = \begin{cases} x^2, \sin\left(\frac{1}{x}\right), x \neq 0\\ 0, \quad x = 0 \end{cases}$$

Which of the following statements about f and g is true?

- A) Both f and g are differentiable at x = 0
- B) Both f and g are continuous at x = 0 and neither is differentiable at x = 0
- C) f is continuous at x = 0 but not differentiable at x = 0, while g is differentiable at x = 0
- D) f is differentiable at x = 0, while g is continuous at x = 0 but not differentiable at x = 0

8.
$$\int \frac{dt}{\sqrt{x}\sqrt{1+x}} \text{ equals:}$$

A) $2sinh^{-1}(\sqrt{x}) + C$
B) $sinh^{-1}(\sqrt{x}) + C$
C) $\ln(\sqrt{x} + \sqrt{1+x}) + C$
D) $\ln(\sqrt{x} - \sqrt{1+x}) + C$

- 9. What is the volume of the solid generated by rotating the area included between the curve $y = x^2$ and the line y = x about the line x = 0
 - A) $\frac{2\pi}{15}$ cubic unitsB) $\frac{\pi}{6}$ cubic unitsC) $\frac{\pi}{3}$ cubic unitsD) $\frac{\pi}{2}$ cubic units
- 10. A card is drawn at random from a well-shuffed pack of cards. What is the probability that it is a heart card or a red card or a king?
 - A) $\frac{5}{13}$ B) $\frac{6}{13}$ C) $\frac{7}{13}$ D) $\frac{8}{13}$
- 11. An equilateral triangle is inscribed in a circle of radius 1 centimeter. If a point is taken at random within the circle, what is the probability that the point lies in the triangular region?

A)
$$\frac{3\sqrt{3}}{4\pi}$$
 B) $\frac{3}{4\pi}$ C) $\frac{\sqrt{3}}{4\pi}$ D) $\frac{3}{4}$

12. The series $\sum_{n=2}^{\infty} \frac{1}{n(logn)^p}$

- A) Converges for all p
- B) Diverges for all p
- C) Converges if p > 1 and diverges if 0
- D) Converges if $p \ge 1$ and diverges if 0

13. Which of the following statements is true of the function $f = \frac{1}{x^2}, x \neq 0$?

- A) f is uniformly continuous on $(0, \infty)$
- B) f is not uniformly continuous on $[a, \infty)$, a > 0
- C) f is not continuous on $[a, \infty)$, a > 0
- D) f is uniformly continuous on $[a, \infty)$, a > 0, but not uniformly continuous on $(0, \infty)$

14. Consider the function $f(x, y) = (x^3 + y^3)^{\frac{1}{3}}$. Then

- A) Both $f_x(x, y)$ and $f_y(x, y)$ fail to exist on the line y = x
- B) Both $f_x(x, y)$ and $f_y(x, y)$ fail to exist on the line y = -x
- C) Both $f_x(x, y)$ and $f_y(x, y)$ fail to exist on the line y = 0
- D) Both $f_x(x, y)$ and $f_y(x, y)$ fail to exist on the line x = 0

- I. If f is monotonic on [a, b], then f is Riemann integrable on [a, b]
- II. If f is bounded and continuous on [a, b] except possibly at a or b, then f is Riemann integrable on [a, b]
- III. If f is bounded and continuous on [a, b] with only a finite number of points of discontinuities in [a, b], then f is Riemann integrable on [a, b].
- A) Statements I and II are correct B) Statements II and III are correct
- C) All the three Statements are correct D) None of the three statements are correct

- 17. Let f be an absolutely continuous function on [a, b]. Choose the correct statement.
 - A) f is of bounded variation on [a, b]
 - B) f is not of bounded variation on [a, b]
 - C) f may or may not be bounded variation on [a, b]
 - D) None of these statements is true

18. What does the equation $|z|^2 = lm(z)$ represent in the Argand plane?

- A) The imaginary axis
- B) The upper half plane
- C) The circle centred at $\frac{1}{2}i$ and of radius $\frac{1}{2}$
- D) The unit circle centred at the origin
- 19. Which of the following expressions is equal to $(sin\theta + icos\theta)^4$?
 - A) $(\cos\theta + i\sin\theta)^4$ B) $(\cos\theta i\sin\theta)^4$
 - C) $(sin\theta icos\theta)^4$ D) $(sin\theta + icos\theta)^2$

20. The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n! z^n}{n^n}$ is given by

A) $\frac{1}{e}$ B) e C) 0 D) ∞

21. The largest order of the cyclic group contained in $Z_6 \times Z_8$ is:

- A) 12 B) 18 C) 24 D) 48
- 22. Let Q be the Quaternion group with centre Z(Q). Then the quotient group Q/Z(Q) is:
 - A) a cyclic group of order 4 B) a Klein four-group
 - C) a group of order 2 D) a group of order 8
- 23. Let *G* be the group of 2x2 non-singular matrices under matrix multiplication. Let *H* be the subset consisting of lower triangular matrices of the form $\begin{pmatrix} a & 0 \\ c & d \end{pmatrix}$. Then
 - A) H is not a proper subgroup of G
 - B) H is not a subgroup of G
 - C) H is a subgroup, but not a normal subgroup of G
 - D) H is a normal subgroup of G

- 24. Let G be a group of order 15. Then the number of Sylow subgroups of G of order 3 is:
 - A) 0 B) 1 C) 2 D) 3
- 25. Let S_3 be the permutation group on three symbols with identity element *e*. Then the number of elements of S_3 which satisfy the equation $x^2 = e$ is:
 - A) 1 B) 2 C) 3 D) 4
- 26. Consider the ring $S = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a.b \in R \}$ with the usual addition and multiplication of matrices and the set $T = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in R \}$. Choose the correct statement.
 - A) T is a subring of S with same identity is that of S
 - B) *T* is a subring of *S* with an identity different from that of S
 - C) *T* is not a subring of *S*
 - D) None of these statements is true
- 27. The units of the Euclidean domain Z[i] are:
 - A) ± 1 B) $\pm i$ C) $\pm 1, \pm i$ D) None of these

28. Choose the incorrect statement:

- A) $[Q(\sqrt{2}, \sqrt{3}) : Q(\sqrt{2})] = 2$ B) $[Q(\sqrt{2}, \sqrt{3}) : Q(\sqrt{3})] = 3$
- C) $[Q(\sqrt{2}):Q]=2$ D) $\sqrt{2}$ and $\sqrt{3}$ are algebraic over Q
- 29. Squaring the circle is impossible because:
 - A) $[Q(\sqrt{\pi}):Q]$ is a power of 2 B) $[Q(\sqrt{\pi}):Q]$ is a power of 3
 - C) $[Q(\sqrt{\pi}):Q]$ is finite D) $[Q(\sqrt{\pi}):Q]$ is not a power of 2
- 30. If $A = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}$ and *I* is $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then which of the following is the zero matrix?
 - A) $A^2 + A 5I$ B) $A^2 A 5I$
 - C) $A^2 + A + 5I$ D) $A^2 A + 5I$

- 31. Which of the following statement is not true?
 - A) If A and B are symmetric matrices, then AB is symmetric
 - B) If A is a symmetric matrix, then A^n is symmetric, $n \in N$
 - C) If A is a symmetric matrix, then f(A) is symmetric for any polynomial f(x)
 - D) If A is an $n \ge n$ symmetric matrix and P is an $n \ge m$ matrix, then $P^T A P$ is symmetric
- 32. Which of the following is a subspace of the vector space of $n \ge n$ real matrices over R?
 - A) The set of $n \ge n$ real symmetric matrices over R
 - B) The set of $n \ge n$ real invertible matrices over R
 - C) The set of $n \ge n$ real non-invertible matrices over R
 - D) The set of $n \ge n$ real non-zero matrices over R

33. Which of the following is a basis for the vector space R^3 ?

- I. $\{(1, 0, 1), (0, 1, 0), (-1, 0, 1)\}$
- II. $\{(1, 2, 3), (2, 3, 4), (2, 4, 6)\}$
- A) I only B) II only
- C) Both I and II D) Neither I nor II

34. For the vector subspace W of R^3 defined by $W = \{(a, b, c): c = 3a, a, b, c \in R\}$

- A) $\dim W = 0$ B) $\dim W = 1$ C) $\dim W = 2$ D) $\dim W = 3$
- 35. In which of the following cases is R^3 not a direct sum of U and V?

A)
$$U = \{(a, b, 0) : a, b \in R\}, V = \{(0, b, c) : b, c \in R\}$$

B)
$$U = \{(a, b, 0) : a, b \in R\}, V = \{(0, 0, c) : c \in R\}$$

- C) $U = \{(a, b, c) : a = b = c, a, b, c \in R\}, V = \{(0, b, c) : b, c \in R\}$
- D) $U = \{(a, 0, 0) : a \in \mathbb{R}\}, V = \{(0, b, c) : b, c \in \mathbb{R}\}$
- 36. Let $f: V \to W$ be a surjective linear map. Let dim V = 5 and dim W = 3. Then
 - A) dim ker f > 2 B) dim ker $f \ge 3$
 - C) dim ker f = 2 D) dim ker f = 0, 1 or 2 and each of these cases can arise

- 37. Consider the map $F : R^3 \to R^2$ defined by F(x, y, z) = (x + y, y + z), Then
 - A) *F* is neither linear nor one to one
 - B) *F* is neither linear nor onto
 - C) *F* is linear and has zero kernel
 - D) *F* is linear and has a nonzero subspace as kernel

38. Which of the following is a solution of the differential equation $x \frac{dy}{dx} - 2y = x^3 e^x$?

- A) $y = x^2$ B) $y = x^2 (e^x + c)$
- C) $y = \sin x$ D) $y = \ln x$

39. What is the solution of the differential equation

$$\left(x\sec\left(\frac{y}{x}\right)+y\right)dx-x\ dy=0$$

with initial condition y(1) = 0?

A) $x = e^{\sin(\frac{y}{x})}$ B) $x = e^{\cos(\frac{y}{x})}$ C) $x = e^{\sin(\frac{x}{y})}$ D) $x = e^{\cos(\frac{x}{y})}$

40. What is the particular integral of the partial differential equation

$$\frac{\partial^2 z}{\partial x^2} - 7 \frac{\partial^2 z}{\partial x \partial y} + 3 \frac{\partial^2 z}{\partial y^2} = e^{x-y}?$$
A) e^{x-y} B) $\frac{1}{12}e^{x-y}$ C) $\frac{1}{15}e^{x-y}$ D) $\frac{1}{20}e^{x-y}$

41. Which of the following partial differential equation is hyperbolic?

A)
$$\frac{\partial^2 u}{\partial x^2} + 6 \frac{\partial^2 u}{\partial x \partial y} + 3 \frac{\partial^2 u}{\partial y^2} = 0$$
 B) $2 \frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 3 \frac{\partial^2 u}{\partial y^2} = 0$

C)
$$4\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$$
 D) $\frac{\partial^2 u}{\partial x^2} - 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$

- 42. Let $X = \{a, b, c\}$ and $\tau = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ be a topology on *X*. Then
 - A) (X, τ) is a T_1 space
 - B) (X, τ) is a T_2 space
 - C) (X, τ) is neither a T_1 space nor a T_2 space
 - D) (X, τ) is both a T_1 space and a T_2 space
- 43. Which of the following statements is true?
 - A) For $1 \le p \le \infty$, the metric space l^p is separable
 - B) For $1 \le p \le \infty$, the metric space l^p is complete
 - C) For $1 \le p \le \infty$, the closed unit ball in l^p is compact
 - D) For $1 \le p < r \le \infty$, the normed space l^r is contained in l^p
- 44. Choose the correct statement from among the following:
 - A) The supremum norm on C[a, b] comes from an inner product
 - B) C[a, b] is not complete with respect to the supremum norm
 - C) C[a, b] is complete with respect to $\|.\|_2$
 - D) C[a, b] is complete with respect to the supremum norm
- 45. Consider two different inner products in \mathbb{R}^2

IP 1 defined by $\langle u, v \rangle = u_1 v_1 + (u_2 v_1 + u_1 v_2) + 2u_2 v_2$

for all $u = (u_1, v_1)$ and $v = (u_2, v_2) \in \mathbb{R}^2$ and IP 2 the standard inner product on \mathbb{R}^2 . Then the angle between (1, 0) and (0, 1) is:

- A) $\frac{\pi}{4}$ with respect to IP 2
- B) $\frac{\pi}{4}$ with respect to IP 1
- C) $\frac{\pi}{2}$ with respect to both IP 1 and IP 2
- D) $\frac{\pi}{4}$ with respect to both IP 1 and IP 2

46.	If $y - 2x + c = 0$ is a tangent to the parabola $y^2 = x$, then the value of c is											
	A) -	<u>1</u> 8	B)	-1		C)	2	D)	-2			
47.	If $A = \cos(\cos x) + \sin(\cos x)$, then the least and greatest values of A are											
	A)	0 and 2	B)	-1 and	1	C)	$-\sqrt{2}$ and $\sqrt{2}$	D)	0 and $\sqrt{2}$			
48.	The values of $\sum_{r=1}^{18} \cos^2(5r)^\circ$, where x° denotes the x degrees, is equal to											
	A)		,			,		D)	25/2			
49.	The value of $\int_{c} \frac{e^{2z}}{(z-1)^5}$, where <i>c</i> is the circle $ z =2$ is											
	A)	$\frac{4\pi}{3}$ ie ²	B)	$\frac{8\pi}{3}$ ie	2	C)	$\frac{16}{3}$ <i>ie</i> ²	D)	$\frac{16}{24}$ ie ²			
50.	Let $f: C \to C$ be defined by $f(z) = \frac{1 - e^{-z}}{z}$ for $z \in \mathbb{C}$. For this function, the point $z=0$ is											
	A)	an essential si	singularity			B)	a pole of order zero					
	C)	a pole of orde	rder one			D)	a removable singularity					
51.	$\gamma:[0,1] \rightarrow C$ is defined by $\gamma(t)=2e^{2\pi it}$. Then $n(\gamma, \frac{1}{2})$ is											
	A)	Not defined	B)	2		C)	1	D)	0			
52.	The number of fixed points of the Mobius-transformation $S(z) = az + b, a \neq 0, a \neq 1$ are:											
	A)	2	B)	1		C)	0	D)	3			
53.	If z-3	i = z+3i , the lo	cus of z	is:								
	A)	real axis			B)	imagir	nary axis					
	C) c	ircle $x^2 + y^2 = 1$			D)	parabo	$y^2 = 9x$					
54.	The nu	The number of elements of order 3 in the alternating group A_4 is:										
	A)	7	B)	2		C)	8	D)	5			

55. How many (non-isomorphic) groups of order 51 are there 4 3 C) A) B) 2 D) 1 Find the number of non-zero elements in the field Z_n which are squares *ie*. of the 56. form m^2 , $m \in Z_p$, $m \neq 0$, where p is an odd prime number A) $\frac{p-1}{2}$ B) $\frac{p}{3}$ C) $\frac{p+1}{2}$ D) р The number of group homomorphisms from the symmetric group S_3 to $\mathbb{Z}/6\mathbb{Z}$ is 57. A) 6 2 C) 3 D) 1 B) 58. Let G be a cyclic group of order 10. For $a \in G$, let $\langle a \rangle$ denote the subgroup generated by *a*. How many elements are there in the set $\{a \in G | \langle a \rangle = G\}$ 3 4 5 A) B) C) D) 1 59. The system $x+y+2z=a_1$, $-2x-z=a_2$, $x+3y+5z=a_3$ has no solution, then A) $a_3 = a_2$ and $a_1 \neq 0$ B) $a_3 = a_2 = a_1 = 0$ C) $a_3 = 3a_1 \text{ and } a_2 = 0$ D) $a_2 = -3a_1$ and $a_3 = 0$ The rank of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ by 60. T(a, b, c) = (a+2b-c, b+c, a+b-2c) is 1 C) A) B) 2 3 0 D) 61. Let A be a nilpotent linear transformation on a finite dimensional vector space V over reals. Which of the following is true about A A) A is invertible B) *I*–*A* is invertible C) Eigen values of A are of absolute value 1 D) A has 'n' distinct eigen values, where n is the dim of V62. The geometrical effect of the linear transformation associated with the matrix $\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}$ is

A) rotation by an angle $\frac{\pi}{2}$

- B) stretching along Y-axis and a reflection with respect to Y-axis
- C) a stretching along X-axis
- D) reflection with respect to X-axis

63. Let A be a 3×3 matrix with complex entries, whose eigenvalues are $1,\pm 2i$. Suppose that for some $\alpha, \beta, \gamma \in C$, $\alpha A^{-1} = A^2 + \beta A + \gamma I$, where I is 3×3 identity matrix. Then (α, β, γ) equals

A)
$$(-1,-4,4)$$
 B) $(-1,4,-2)$ C) $(-1,-2,4)$ D) $(4,-1,4)$

Let $M = \begin{pmatrix} 1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 1 \end{pmatrix}$ where $a, b, c \in \mathbb{R}$, then M is diagonalizble if and only if 64. B) b = ac C) c = ab D) a = b = cA) a = bc

The general solution of the wave equation $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ is 65.

> B) $y(x,t) = \varphi(x+ct) + \chi(x-ct)$ A) $y(x,t) = \phi(x+ct)$

C)
$$y(x,t)=\varphi(x-ct)$$
 D) No general solution exist

66. For the equation
$$(x^2+x-2)^2y''+3(x+2)y'+(x-1)y=0$$
, which of the following is correct?

- A) x = -2 is regular singular point; x = 1 is irregular singular point
- x = -2 is regular singular point; x = 1 is regular singular point B)
- x = -2 is irregular singular point; x = 1 is irregular singular point C)
- x = -2 is irregular singular point; x = 1 is regular singular point D)

67. The partial differential equation
$$u_{xx} + x^2 u_{yy} = 0$$
 is of

A) parabolic hyperbolic C) straight linear D) elliptic B)

68. The solution of
$$(12x+5y-9)dx+(5x+2y-4)dy=0$$
 is
A) $6x^2-5xy-y^2+9x-4y=c$ B) $3x^2-4xy-y^2+9x-3y=c$
C) $6x^2+5xy-y^2-9x-4y=c$ D) $6x^2+5xy+y^2-9x-4y=c$

69 Using Picard's method the approximate solution to the initial value problem
$$y'=1+y^2$$
,

y(0) = 0 is

C)

B) $y(x) = x - \frac{1}{3}x^3 - \frac{2}{15}x^5 \pm \cdots$ A) $y(x) = \tan x$

C)
$$y(x) = x - \frac{1}{3}x^2 - \frac{2}{15}x^4 \pm \cdots$$
D) $y(x) = x - \frac{2}{3}x^3 - \frac{1}{15}x^5 \pm \cdots$

The partial differential equation formed from the equation that represents the set of all 70. spheres whose centre lie along the z-axis is given by

A)
$$xp-yq=0$$
 B) $yp-2q=0$ C) $yp-xq=0$ D) $xp-2q=0$

- 71. Which of the following are solutions to the partial differential equation $\frac{\partial^2 u}{\partial x^2} = 9 \frac{\partial^2 u}{\partial x^2}$
 - A) $\cos(3x-y)$ B) x^2+y^2 C) $\sin(3x-3y)$ D) $e^{-3\pi x}\sin\pi y$

72. Which of the following is an example of parabolic type partial differential equation

- A) Wave equation B) Heat equation
- C) Laplace equation D) All the above
- 73. Let X and Y be two topological spaces which are homomorphic. Then which of the following is not true
 - A) If X is connected then Y is also connected
 - B) If *X* is compact then *Y* is also compact
 - C) If *X* is Hausdroff then *Y* is also Hausdroff
 - D) If *X* is complete then *Y* is also complete
- 74. Which of the following is true?
 - A) The set of integers Z with usual metric is a complete metric space
 - B) [0, 1] is nowhere dense in *R* with usual topology
 - C) The set Q of rational numbers can be written as $Q = \bigcap_{n \in N} \bigcup_n$, where $\{U_n, n \in N\}$ is a sequence of open sets in R with usual topology
 - D) If d is a bounded metric in X and d' is an unbounded metric on X then d cannot equivalent to d'
- 75. Let *X* be a Hausdroff space. Then which of the following is true
 - A) A sequence in X may have more than one limit
 - B) The diagonal $\{(x,x) | x \in X\}$ is not closed
 - C) If $f: X \to Y$ is continuous and Y is Hausroff then $\{(x,y) | f(x)=f(y)\}$ is a closed subspace of $X \times X$
 - D) There exists a metric space which is not Hausdroff
- 76. Let τ be the topology on *R* generated by $\{ [a,a+1] \mid a \in R \}$, then
 - A) τ is the discrete topology B) τ is the trivial topology
 - C) τ is countable D) Every singleton set is open but not closed

- 77. Let X=R with the topology defined by U is open if and only if X-U is finite or X., then the sequence $\{x_n\}$ where $x_n=n$ for all $n \in N$
 - A) Converges and the limit is unique
 - B) The limit of x_n cannot be an integer
 - C) Converges to 1
 - D) It has no limit points

78. If $1 \le p < q < \infty$ and $0 \ne x \in l^p$, then which of the following relation is true always A) $||x||_p > ||x||_q$ B) $||x||_p \ge ||x||_q$ C) $||x||_p < ||x||_q$ D) $||x||_p \le ||x||_q$

- 79. Let $F: X \rightarrow Y$ be a closed, linear map such that R(F)=Y where X and Y are Banach spaces. Which of the following is true
 - A) F is continuous and open B) F is continuous but not open
 - C) F is open and discontinuous D) F is neither continuous nor open
- 80. Let X be an inner product space, Y be a subspace of X and $x \in X$. Let y be a best approximation from Y to x. Then dist(x, Y) is
 - A) $< x, y >^{1/2}$
 - B) $< x, x y >^{1/2}$
 - C) $< x, x + y >^{1/2}$
 - D) $< x + y, x y >^{1/2}$