1. What is the range of the real valued function $y=\frac{5}{2 x-10}$?
A) $(-\infty, \infty)$
B) $(-\infty, 0) \cup(0, \infty)$
C) $(-\infty, 5) \cup(5, \infty)$
D) $[0, \infty)$
2. Which of the following is the inverse of the function $f(x)=e^{2 x}$?
A) $\quad g(x)=\ln x$
B) $\quad g(x)=\ln (2 x)$
C) $\quad g(x)=\ln \sqrt{x}$
D) $\quad g(x)=e^{-2 x}$
3. If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ equals the sum of their squares, then
A) $2 a c=a b+b^{2}$
B) $\quad 2 a c=a+b$
C) $2 a c=a^{2}+b^{2}$
D) $2 a c=a^{2}-b^{2}$
4. Which of the following is the equation of the plane containing the lines?

$$
\frac{x-1}{-2}=y-4=z \text { and } \frac{x-2}{-3}=\frac{y-1}{4}=\frac{z-2}{-1} ?
$$

A) $x+y+z=0$
B) $x+y+z=1$
C) $x+y+z=4$
D) $x+y+z=5$
5. The parametric equation of the line passing through the point $(1,2,3)$ and perpendicular to the xz-plane is given by:
A) $x=1, y=2, z=3$
B) $x=1+t, y=2, z=3$
C) $x=1, y=2+t, z=3$
D) $x=1, y=2, z=3+t$
6. Which of the following statements is true of the function $f(x)=\frac{x+2}{x^{2}-3 x-10}$?
A) $\quad f$ is continuous for all real x
B) $\quad f$ has a removable discontinuity at $x=-2$ and a non-removable discontinuity at $x=5$
C) $\quad f$ has removable discontinuities at $x=-2$ and $x=5$
D) $\quad f$ has a removable discontinuity at $x=5$ and a non-removable discontinuity at $x=-2$
7. Consider the functions
$f(x)=\left\{\begin{array}{c}x \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, \quad x=0\end{array}\right.$
And
$f(x)=\left\{\begin{array}{c}x^{2}, \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, \quad x=0\end{array}\right.$
Which of the following statements about f and g is true?
A) Both f and g are differentiable at $x=0$
B) Both f and g are continuous at $x=0$ and neither is differentiable at $x=0$
C) $\quad f$ is continuous at $x=0$ but not differentiable at $x=0$, while g is differentiable at $x=0$
D) $\quad f$ is differentiable at $x=0$, while g is continuous at $x=0$ but not differentiable at

$$
x=0
$$

8. $\int \frac{d t}{\sqrt{x} \sqrt{1+x}}$ equals:
A) $2 \sinh ^{-1}(\sqrt{x})+C$
B) $\sinh ^{-1}(\sqrt{x})+C$
C) $\ln (\sqrt{x}+\sqrt{1+x})+C$
D) $\quad \ln (\sqrt{x}-\sqrt{1+x})+C$
9. What is the volume of the solid generated by rotating the area included between the curve $y=x^{2}$ and the line $y=x$ about the line $x=0$
A) $\frac{2 \pi}{15}$ cubic units
B) $\quad \frac{\pi}{6}$ cubic units
C) $\frac{\pi}{3}$ cubic units
D) $\frac{\pi}{2}$ cubic units
10. A card is drawn at random from a well-shuffed pack of cards. What is the probability that it is a heart card or a red card or a king?
A) $\frac{5}{13}$
B) $\frac{6}{13}$
C) $\frac{7}{13}$
D) $\frac{8}{13}$
11. An equilateral triangle is inscribed in a circle of radius 1 centimeter. If a point is taken at random within the circle, what is the probability that the point lies in the triangular region?
A) $\frac{3 \sqrt{3}}{4 \pi}$
B) $\frac{3}{4 \pi}$
C) $\frac{\sqrt{3}}{4 \pi}$
D) $\frac{3}{4}$
12. The series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}$
A) Converges for all p
B) Diverges for all p
C) Converges if $p>1$ and diverges if $0<p \leq 1$
D) Converges if $p \geq 1$ and diverges if $0<p<1$
13. Which of the following statements is true of the function $f=\frac{1}{x^{2}}, x \neq 0$?
A) $\quad f$ is uniformly continuous on $(0, \infty)$
B) $\quad f$ is not uniformly continuous on $[\mathrm{a}, \infty), \mathrm{a}>0$
C) $\quad f$ is not continuous on $[\mathrm{a}, \infty), \mathrm{a}>0$
D) $\quad f$ is uniformly continuous on $[\mathrm{a}, \infty)$, $\mathrm{a}>0$, but not uniformly continuous on $(0, \infty)$
14. Consider the function $f(x, y)=\left(x^{3}+y^{3}\right)^{\frac{1}{3}}$. Then
A) Both $f_{x}(x, y)$ and $f_{y}(x, y)$ fail to exist on the line $y=x$
B) Both $f_{x}(x, y)$ and $f_{y}(x, y)$ fail to exist on the line $y=-x$
C) Both $f_{x}(x, y)$ and $f_{y}(x, y)$ fail to exist on the line $y=0$
D) Both $f_{x}(x, y)$ and $f_{y}(x, y)$ fail to exist on the line $x=0$
15. If $u=\frac{y-x}{1+x y}$ and $v=\tan ^{-1} y-\tan ^{-1} x$, then
A) $\quad u=\tan v$
B) $\quad v=\tan u$
C) $\quad u=\sin v$
D) $u=\cos v$
16. Consider the following three statements about Riemann integrability of a function f on $[a, b]$
I. If f is monotonic on $[a, b]$, then f is Riemann integrable on $[a, b]$
II. If f is bounded and continuous on $[a, b]$ except possibly at a or b, then f is Riemann integrable on $[a, b]$
III. If f is bounded and continuous on [a, b] with only a finite number of points of discontinuities in $[a, b]$, then f is Riemann integrable on $[a, b]$.
A) Statements I and II are correct
B) Statements II and III are correct
C) All the three Statements are correct
D) None of the three statements are correct
17. Let f be an absolutely continuous function on $[a, b]$. Choose the correct statement.
A) $\quad f$ is of bounded variation on $[a, b]$
B) $\quad f$ is not of bounded variation on $[a, b]$
C) $\quad f$ may or may not be bounded variation on $[a, b]$
D) None of these statements is true
18. What does the equation $|z|^{2}=\operatorname{lm}(z)$ represent in the Argand plane?
A) The imaginary axis
B) The upper half plane
C) The circle centred at $\frac{1}{2} i$ and of radius $\frac{1}{2}$
D) The unit circle centred at the origin
19. Which of the following expressions is equal to $(\sin \theta+i \cos \theta)^{4}$?
A) $(\cos \theta+i \sin \theta)^{4}$
B) $(\cos \theta-i \sin \theta)^{4}$
C) $(\sin \theta-i \cos \theta)^{4}$
D) $(\sin \theta+i \cos \theta)^{2}$
20. The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!z^{n}}{n^{n}}$ is given by
A) $\frac{1}{e}$
B) e
C) 0
D) $\quad \infty$
21. The largest order of the cyclic group contained in $Z_{6} \times Z_{8}$ is:
A) 12
B) 18
C) 24
D) 48
22. Let Q be the Quaternion group with centre $Z(Q)$. Then the quotient group $Q / Z(Q)$ is:
A) a cyclic group of order 4
B) a Klein four-group
C) a group of order 2
D) a group of order 8
23. Let G be the group of 2×2 non-singular matrices under matrix multiplication. Let H be the subset consisting of lower triangular matrices of the form $\left(\begin{array}{ll}a & 0 \\ c & d\end{array}\right)$. Then
A) $\quad H$ is not a proper subgroup of G
B) $\quad H$ is not a subgroup of G
C) $\quad H$ is a subgroup, but not a normal subgroup of G
D) H is a normal subgroup of G
24. Let G be a group of order 15 . Then the number of Sylow subgroups of G of order 3 is:
A) 0
B) 1
C) 2
D) 3
25. Let S_{3} be the permutation group on three symbols with identity element e. Then the number of elements of S_{3} which satisfy the equation $x^{2}=e$ is:
A) 1
B) 2
C) 3
D) 4
26. Consider the ring $S=\left\{\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right): a . b \in \mathrm{R}\right\}$ with the usual addition and multiplication of matrices and the set $T=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right): a \in \mathrm{R}\right\}$. Choose the correct statement.
A) $\quad T$ is a subring of S with same identity is that of S
B) $\quad T$ is a subring of S with an identity different from that of S
C) $\quad T$ is not a subring of S
D) None of these statements is true
27. The units of the Euclidean domain $Z[i]$ are:
A) ± 1
B) $\pm i$
C) $\pm 1, \pm i$
D) None of these
28. Choose the incorrect statement:
A) $\quad[Q(\sqrt{2}, \sqrt{3}): Q(\sqrt{2})]=2$
B) $\quad[Q(\sqrt{2}, \sqrt{3}): Q(\sqrt{3})]=3$
C) $\quad[Q(\sqrt{2}): Q]=2$
D) $\quad \sqrt{2}$ and $\sqrt{3}$ are algebraic over Q
29. Squaring the circle is impossible because:
A) $\quad[Q(\sqrt{\pi}): Q)]$ is a power of 2
B) $\quad[Q(\sqrt{\pi}): Q]$ is a power of 3
C) $\quad[Q(\sqrt{\pi}): Q]$ is finite
D) $\quad[Q(\sqrt{\pi}): Q]$ is not a power of 2
30. If $A=\left(\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right)$ and I is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, then which of the following is the zero matrix?
A) $A^{2}+A-5 I$
B) $A^{2}-A-5 I$
C) $\quad A^{2}+A+5 I$
D) $A^{2}-A+5 I$
31. Which of the following statement is not true?
A) If A and B are symmetric matrices, then $A B$ is symmetric
B) If A is a symmetric matrix, then A^{n} is symmetric, $n \in N$
C) If A is a symmetric matrix, then $f(A)$ is symmetric for any polynomial $f(x)$
D) If A is an $n \times n$ symmetric matrix and P is an $n \times m$ matrix, then $P^{T} A P$ is symmetric
32. Which of the following is a subspace of the vector space of $n \mathrm{x} n$ real matrices over R ?
A) The set of $n \times n$ real symmetric matrices over R
B) The set of $n \times n$ real invertible matrices over R
C) The set of $n \times n$ real non-invertible matrices over R
D) The set of $n \times n$ real non-zero matrices over R
33. Which of the following is a basis for the vector space R^{3} ?
I. $\{(1,0,1),(0,1,0),(-1,0,1)\}$
II. $\quad\{(1,2,3),(2,3,4),(2,4,6)\}$
A) I only
B) II only
C) Both I and II
D) Neither I nor II
34. For the vector subspace W of R^{3} defined by $W=\{(a, b, c): c=3 a, a, b, c \in \mathrm{R}\}$
A) $\operatorname{dim} W=0$
B) $\operatorname{dim} W=1$
C) $\operatorname{dim} W=2$
D) $\quad \operatorname{dim} W=3$
35. In which of the following cases is R^{3} not a direct sum of U and V ?
A) $\quad U=\{(a, b, 0): a, b \in \mathrm{R}\}, V=\{(0, b, c): b, c \in \mathrm{R}\}$
B) $\quad U=\{(a, b, 0): a, b \in \mathrm{R}\}, V=\{(0,0, c): c \in \mathrm{R}\}$
C) $\quad U=\{(a, b, c): a=b=c, a, b, c \in \mathrm{R}\}, V=\{(0, b, c): b, c \in \mathrm{R}\}$
D) $\quad U=\{(a, 0,0): a \in \mathrm{R}\}, V=\{(0, b, c): b, c \in \mathrm{R}\}$
36. Let $f: V \rightarrow W$ be a surjective linear map. Let $\operatorname{dim} V=5$ and $\operatorname{dim} W=3$. Then
A) $\quad \operatorname{dim} \operatorname{ker} f>2$
B) $\quad \operatorname{dim} \operatorname{ker} f \geq 3$
C) $\quad \operatorname{dim} \operatorname{ker} f=2$
D) $\operatorname{dim} \operatorname{ker} f=0,1$ or 2 and each of these cases can arise
37. Consider the map $F: R^{3} \rightarrow R^{2}$ defined by $F(x, y, z)=(x+y, y+z)$, Then
A) $\quad F$ is neither linear nor one to one
B) $\quad F$ is neither linear nor onto
C) $\quad F$ is linear and has zero kernel
D) $\quad F$ is linear and has a nonzero subspace as kernel
38. Which of the following is a solution of the differential equation $x \frac{d y}{d x}-2 y=x^{3} e^{x}$?
A) $y=x^{2}$
B) $y=x^{2}\left(e^{x}+c\right)$
C) $y=\sin x$
D) $y=\ln x$
39. What is the solution of the differential equation

$$
\left(x \sec \left(\frac{y}{x}\right)+y\right) d x-x d y=0
$$

with initial condition $y(1)=0$?
A) $\quad x=e^{\sin \left(\frac{y}{x}\right)}$
B) $\quad x=e^{\cos \left(\frac{y}{x}\right)}$
C) $\quad x=e^{\sin \left(\frac{x}{y}\right)}$
D) $\quad x=e^{\cos \left(\frac{x}{y}\right)}$
40. What is the particular integral of the partial differential equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-7 \frac{\partial^{2} z}{\partial x \partial y}+3 \frac{\partial^{2} z}{\partial y^{2}}=e^{x-y_{?}}
$$

A) e^{x-y}
B) $\frac{1}{12} e^{x-y}$
C) $\frac{1}{15} e^{x-y}$
D) $\frac{1}{20} e^{x-y}$
41. Which of the following partial differential equation is hyperbolic?
A) $\frac{\partial^{2} u}{\partial x^{2}}+6 \frac{\partial^{2} u}{\partial x \partial y}+3 \frac{\partial^{2} u}{\partial y^{2}}=0$
B) $2 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+3 \frac{\partial^{2} u}{\partial y^{2}}=0$
C) $\quad 4 \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$
D) $\quad \frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0$
42. Let $X=\{a, b, c\}$ and $\tau=\{X, \phi,\{a\},\{a, b\},\{a, c\}\}$ be a topology on X. Then
A) (X, τ) is a T_{1} space
B) (X, τ) is a T_{2} space
C) (X, τ) is neither a T_{1} space nor a T_{2} space
D) (X, τ) is both a T_{1} space and a T_{2} space
43. Which of the following statements is true?
A) For $1 \leq p \leq \infty$, the metric space l^{p} is separable
B) For $1 \leq p \leq \infty$, the metric space l^{p} is complete
C) For $1 \leq p \leq \infty$, the closed unit ball in l^{p} is compact
D) For $1 \leq p<r \leq \infty$, the normed space l^{r} is contained in l^{p}
44. Choose the correct statement from among the following:
A) The supremum norm on $C[a . b]$ comes from an inner product
B) $\quad C[a . b]$ is not complete with respect to the supremum norm
C) $\quad C[a . b]$ is complete with respect to $\|.\|_{2}$
D) $\quad C[a . b]$ is complete with respect to the supremum norm
45. Consider two different inner products in \mathbb{R}^{2}

IP 1 defined by $\langle u, v\rangle=u_{1} v_{1}+\left(u_{2} v_{1}+u_{1} v_{2}\right)+2 u_{2} v_{2}$
for all $u=\left(u_{1}, v_{1}\right)$ and $v=\left(u_{2}, v_{2}\right) \in \mathbb{R}^{2}$ and IP 2 the standard inner product on \mathbb{R}^{2}.
Then the angle between $(1,0)$ and $(0,1)$ is:
A) $\frac{\pi}{4}$ with respect to IP 2
B) $\quad \frac{\pi}{4}$ with respect to IP 1
C) $\quad \frac{\pi}{2}$ with respect to both IP 1 and IP 2
D) $\frac{\pi}{4}$ with respect to both IP 1 and IP 2
46. If $y-2 x+c=0$ is a tangent to the parabola $y^{2}=x$, then the value of c is
A) $-\frac{1}{8}$
B) -1
C) 2
D) $\quad-2$
47. If $A=\cos (\cos x)+\sin (\cos x)$, then the least and greatest values of A are
A) 0 and 2
B) $\quad-1$ and 1
C) $\quad-\sqrt{2}$ and $\sqrt{2}$
D) 0 and $\sqrt{2}$
48. The values of $\sum_{r=1}^{18} \cos ^{2}(5 r)^{\circ}$, where x° denotes the x degrees, is equal to
A) 0
B) $7 / 2$
C) $17 / 2$
D) $25 / 2$
49. The value of $\int_{c} \frac{e^{2 z}}{(z-1)^{5}}$, where c is the circle $|z|=2$ is
A) $\frac{4 \pi}{3} i e^{2}$
B) $\frac{8 \pi}{3} i e^{2}$
C) $\frac{16}{3} i e^{2}$
D) $\frac{16}{24} i e^{2}$
50. Let $f: C \rightarrow C$ be defined by $f(z)=\frac{1-e^{-z}}{z}$ for $z \in \mathbb{C}$. For this function, the point $z=0$ is
A) an essential singularity
B) a pole of order zero
C) a pole of order one
D) a removable singularity
51. $\gamma:[0,1] \rightarrow C$ is defined by $\gamma(t)=2 e^{2 \pi i t}$. Then $n\left(\gamma, \frac{1}{2}\right) \quad$ is
A) Not defined
B) 2
C) 1
D) 0
52. The number of fixed points of the Mobius-transformation $S(z)=a z+b, a \neq 0, a \neq 1$ are:
A) 2
B) 1
C) 0
D) 3
53. If $|z-3 i|=|z+3 i|$, the locus of z is:
A) real axis
B) imaginary axis
C) circle $x^{2}+y^{2}=1$
D) parabola $y^{2}=9 x$
54. The number of elements of order 3 in the alternating group A_{4} is:
A) 7
B) 2
C) 8
D) 5
55. How many (non-isomorphic) groups of order 51 are there
A) 4
B) 3
C) 2
D) 1
56. Find the number of non-zero elements in the field Z_{p} which are squares $i e$. of the form $m^{2}, m \in Z_{p}, m \neq 0$, where p is an odd prime number
A) $\frac{p-1}{2}$
B) $\frac{p}{3}$
C) $\frac{p+1}{2}$
D) p
57. The number of group homomorphisms from the symmetric group S_{3} to $\mathbb{Z} / 6 \mathbb{Z}$ is
A) 6
B) 2
C) 3
D) 1
58. Let G be a cyclic group of order 10 . For $a \in G$, let $\langle a\rangle$ denote the subgroup generated by a. How many elements are there in the set $\{a \in G \mid\langle a\rangle=G\}$
A) 3
B) 4
C) 5
D) 1
59. The system $x+y+2 z=a_{1},-2 x-z=a_{2}, x+3 y+5 z=a_{3}$ has no solution, then
A) $\quad a_{3}=a_{2}$ and $a_{1} \neq 0$
B) $a_{3}=a_{2}=a_{1}=0$
C) $\quad a_{3}=3 a_{1}$ and $a_{2}=0$
D) $\quad a_{2}=-3 a_{1}$ and $a_{3}=0$
60. The rank of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T(a, b, c)=(a+2 b-c, b+c, a+b-2 c)$ is
A) 1
B) 2
C) 3
D) 0
61. Let A be a nilpotent linear transformation on a finite dimensional vector space V over reals. Which of the following is true about A
A) $\quad A$ is invertible
B) I-A is invertible
C) Eigen values of A are of absolute value 1
D) $\quad A$ has ' n ' distinct eigen values, where n is the dim of V
62. The geometrical effect of the linear transformation associated with the matrix

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right] \quad \text { is }
$$

A) rotation by an angle $\frac{\pi}{2}$
B) stretching along Y -axis and a reflection with respect to Y -axis
C) a stretching along X -axis
D) reflection with respect to X -axis
63. Let A be a 3×3 matrix with complex entries, whose eigenvalues are $1, \pm 2 i$. Suppose that for some $\alpha, \beta, \gamma \in C, \alpha A^{-1}=A^{2}+\beta A+\gamma I$, where I is 3×3 identity matrix. Then (α, β, γ) equals
A) $(-1,-4,4)$
B) $(-1,4,-2)$
C) $(-1,-2,4)$
D) $(4,-1,4)$
64. Let $M=\left(\begin{array}{lll}1 & a & b \\ 0 & 2 & c \\ 0 & 0 & 1\end{array}\right)$ where $a, b, c \in \mathrm{R}$, then M is diagonalizble if and only if
A) $\quad a=b c$
B) $b=a c$
C) $c=a b$
D) $a=b=c$
65. The general solution of the wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}$ is
A) $\quad y(x, t)=\varphi(x+c t)$
B) $\quad y(x, t)=\varphi(x+c t)+\chi(x-c t)$
C) $\quad y(x, t)=\varphi(x-c t)$
D) No general solution exist
66. For the equation $\left(x^{2}+x-2\right)^{2} y^{\prime \prime}+3(x+2) y^{\prime}+(x-1) y=0$, which of the following is correct?
A) $\quad x=-2$ is regular singular point; $x=1$ is irregular singular point
B) $\quad x=-2$ is regular singular point; $x=1$ is regular singular point
C) $\quad x=-2$ is irregular singular point; $x=1$ is irregular singular point
D) $\quad x=-2$ is irregular singular point; $x=1$ is regular singular point
67. The partial differential equation $u_{x x}+x^{2} u_{y y}=0$ is of
A) parabolic
B) hyperbolic
C) straight linear
D) elliptic
68. The solution of $(12 x+5 y-9) d x+(5 x+2 y-4) d y=0$ is
A) $\quad 6 x^{2}-5 x y-y^{2}+9 x-4 y=c$
B) $\quad 3 x^{2}-4 x y-y^{2}+9 x-3 y=c$
C) $\quad 6 x^{2}+5 x y-y^{2}-9 x-4 y=c$
D) $6 x^{2}+5 x y+y^{2}-9 x-4 y=c$

69 Using Picard's method the approximate solution to the initial value problem $y^{\prime}=1+y^{2}$, $y(0)=0$ is
A) $y(x)=\tan x$
B) $y(x)=x-\frac{1}{3} x^{3}-\frac{2}{15} x^{5} \pm \cdots$
C) $\left.y(x)=x-\frac{1}{3} x^{2}-\frac{2}{15} x^{4} \pm \cdots \mathrm{D}\right)$
$y(x)=x-\frac{2}{3} x^{3}-\frac{1}{15} x^{5} \pm \cdots$
70. The partial differential equation formed from the equation that represents the set of all spheres whose centre lie along the z -axis is given by
A) $\quad x p-y q=0$
B) $\quad y p-2 q=0$
C) $\quad y p-x q=0$
D) $\quad x p-2 q=0$
71. Which of the following are solutions to the partial differential equation $\frac{\partial^{2} u}{\partial x^{2}}=9 \frac{\partial^{2} u}{\partial y^{2}}$
A) $\cos (3 x-y)$
B) $x^{2}+y^{2}$
C) $\sin (3 x-3 y)$
D) $e^{-3 \pi x} \sin \pi y$
72. Which of the following is an example of parabolic type partial differential equation
A) Wave equation
B) Heat equation
C) Laplace equation
D) All the above
73. Let X and Y be two topological spaces which are homomorphic. Then which of the following is not true
A) If X is connected then Y is also connected
B) If X is compact then Y is also compact
C) If X is Hausdroff then Y is also Hausdroff
D) If X is complete then Y is also complete
74. Which of the following is true?
A) The set of integers Z with usual metric is a complete metric space
B) $\quad[0,1]$ is nowhere dense in R with usual topology
C) The set Q of rational numbers can be written as $Q=\cap_{n \in N} \cup_{n}$, where $\left\{U_{n}, n \in N\right\}$ is a sequence of open sets in R with usual topology
D) If d is a bounded metric in X and d^{\prime} is an unbounded metric on X then d cannot equivalent to d^{\prime}
75. Let X be a Hausdroff space. Then which of the following is true
A) A sequence in X may have more than one limit
B) The diagonal $\{(x, x) \mid x \in X\}$ is not closed
C) If $f: X \rightarrow Y$ is continuous and Y is Hausroff then $\{(x, y) \mid f(x)=f(y)\}$ is a closed subspace of $X \times X$
D) There exists a metric space which is not Hausdroff
76. Let τ be the topology on R genertaed by $\{[a, a+1] \mid a \in R\}$, then
A) τ is the discrete topology
B) $\quad \tau$ is the trivial topology
C) $\quad \tau$ is countable
D) Every singleton set is open but not closed
77. Let $X=R$ with the topology defined by U is open if and only if $X-U$ is finite or X., then the sequence $\left\{x_{n}\right\}$ where $x_{n}=n$ for all $n \in N$
A) Converges and the limit is unique
B) The limit of x_{n} cannot be an integer
C) Converges to 1
D) It has no limit points
78. If $1 \leq p<q<\infty$ and $0 \neq x \in l^{p}$, then which of the following relation is true always
A) $\quad\|x\|_{p}>\|x\|_{q}$
B) $\quad\|x\|_{p} \geq\|x\|_{q}$
C) $\quad\|x\|_{p}<\|x\|_{q}$
D) $\|x\|_{p} \leq\|x\|_{q}$
79. Let $F: X \rightarrow Y$ be a closed, linear map such that $R(F)=Y$ where X and Y are Banach spaces. Which of the following is true
A) F is continuous and open
B) F is continuous but not open
C) F is open and discontinuous
D) F is neither continuous nor open
80. Let X be an inner product space, Y be a subspace of X and $x \in X$. Let y be a best approximation from Y to x . Then $\operatorname{dist}(x, Y)$ is
A) $\quad<x, y\rangle^{1 / 2}$
B) $\quad<x, x-y>^{1 / 2}$
C) $\quad<x, x+y>^{1 / 2}$
D) $<x+y, x-y>^{1 / 2}$

